Saturday, 11 December 2021

Ibn al-Nafis

 Firstly describe the pulmonary circulation, coronary circulation, and capillary circulation with true anatomy of the heart which form the basis of the circulatory system. He wrote: “The lungs are composed of parts, one of which is the bronchi, the second the branches of the arteria venosa and the third the branches of the vena arteriosa, all of them connected by loose porous flesh. The blood from the right chamber of the heart must enter the left chamber, but there is no direct pathway between them. 

The thick septum of the heart is not perforated and does not have visible openings as some people thought or invisible pores as Galen thought. The blood from the right chamber must flow through the vena arteriosa (pulmonary artery) to the lungs, spread through its substance, be mingled with air, pass through the arteria venosa (pulmonary vein) to reach the left chamber of the heart Arteries and the heart do not expand and contract at the same time, but rather the one contracts while the other expands” and vice versa. 

He also recognized that the purpose of the pulse is to help disperse the blood from the heart to the rest of the body. He completely rejected the Galenic theory of pulsation after his discovery of the pulmonary circulation. Furthermore, he developed his own Nevisian theory of pulsation after discovering that pulsation is a result of both natural and forced motions, and that the “Forced motion must be the contraction of the arteries caused by the expansion of the heart, and the natural motion must be the expansion of the arteries. 

The primary purpose of the expansion and contraction of the heart is to absorb the cool air and expel the wastes of the spirit and the warm air; however, the ventricle of the heart is wide. Moreover, when it expands it is not possible for it to absorb air until it is full, for that would then ruin the temperament of the spirit, its substance and texture, as well as the temperament of the heart. Thus, the heart is necessarily forced to complete its fill by absorbing the spirit

Thursday, 25 November 2021

A White Great Shark

A great white shark attacks from A Seton and behind, taking its victim by surprise. To do this it has to come up fast and keep its quarry in sight. Its eves must react rapidly to the change in light if its hunt is to be successful. Like all other sharks, the great white relies on its array of senses to locate prey such as seals and sea lions. But its sight is crucial to pinpointing a victim at the surface. Silhouetted against the light just as a human, entering a brightly lit room from the darkness outside, can be briefly dazzled and take 2 few seconds to adjust to the change, so a shark, rising to the surface from the murky depths must cope with a rapid increase in light. It cannot afford to wait for its eves to adjust — a lost second and the prey could be gone.

The secret of this ability lies in the tapetum, a laver of mirror-like plates at the back of the eyeball. It is the tapetum that eerily lights up the cat’s eyes when it is caught in Car headlamps at night. By reflecting light back through the retina, it effectively doubles the amount of light for the eye to use. This is essential for night hunters, like the cat. if they are to see with clarity, especially in the faint moonlight. In the day, though, too much light can be a problem. The cat copes by narrowing its pupil, the gap that Jets in light, to 4 wafer-thin slits, using the muscles in the iris.

The great white shark's tapetum greatly enhances its vision in the murky depths, but it has no iris to protect its eyes when it surfaces rapidly. In order to compensate, it has developed a ‘curtain’ of cells containing pigment. As the shark moves into bright light, these automatically expand over each tapetal plate and then contract as it returns to the depths.

While it is swimming in shallow water, a shark needs to be able to see into the light above it and into the dark below. In this case, the tapetal curtain reacts differently in each half of the eye. The lower half-eye of a killer whale hunting deep in the ocean, a blue shark relies upon reflective plates behind its eyeballs to increase the amount of light striking the retina. of the tapetum, which reflects light from above, is covered to protect the retina. The upper half of the tapetum, which reflects light from below, is exposed to make the most of the light hitting the retina and so give as clear a picture as possible of the murky depths below. 

Wednesday, 13 October 2021

The Guerrilla Warfare

 Those seeking historical insights into counterinsurgency warfare will find Roger Trinquier’s classic modern Warfare: A French View of Counterinsurgency disturbingly current. First published in 1961 and one of the best-selling post-World War II books in France, Trinquier influenced a generation of counterinsurgency scholarship. He succeeded in describing the true face of what current observers also label “modern war.”


Nearly 40 years later, for example, Mark Bowden subtitled his bestsellerBlack Hawk Down, the story of a US Special Forces operation in Somalia gone awry, A Story ofModern War. Despite important differences between Somalia and the colonial independence conflicts Trinquier participated in, ongoing operations in Afghanistan and Iraq reflect many of the nonlinear, unconventional elements of what Trinquier labeled modern war to distinguish between armored battles between nation-states and counterinsurgencies pitting nation-builders against organizations using terrorist tactics.


Trinquier was introduced to counterinsurgency warfare in  Indo-china before being assigned to Algeria in 1957 as a Lieutenant Colonel with the  French  10th  Parachute  Division.  Decades of service conditioned his views. Algeria inspired his writings on modern war, including a penetrating testimony to the central tenet of counterinsurgency: winning the allegiance of the indigenous population. A systematic approach is needed.


Counterinsur-gencies require “an interlocking system of actions political, economic, psychological, the military that aims at the [insurgents’ intended] overthrow of the established authority in a country and its replacement by another regime.” As a military theory, Trinquier’s “modern war” parallels a prominent theme in post-Cold War military thought, one documented by Israeli military historian  Martin  Van  Creveld’s  1991  book, The  Transformation of  War.


Trinquier preceded Van Creveld and other post-Cold War military theorists in arguing that nuclear weapons would lead to a decline in traditional armored warfare and a rise in modern warfare in its many variants: guerrilla warfare, insurgency, terrorism, and subversion.


As do currently military analysts, Trinquierapproached the problem of countering modern warfare by assessing differences between linear clashes of armies and the tactics, goals, methods, and norms of the insurgent or guerrilla. Pitting a traditional combined armed force trained and equipped to defeat similar military organizations against insurgents “reminds one of a pile driver attempting to crush a fly, indefatigably persisting in repeating its efforts.”


In Indochina, for For example, the French “tried to drive the Vietminhinto a classic pitched battle, the only kind knew how to fight, in hope that superiority in material would allow an easy victory.” The only way to avoid similar pitfalls, according to Trinquier is to fight the “specially adapted organization” that is common to almost all subversive, violent movements seeking to overthrow the status quo.


In October 2003 it appeared the UnitedStates was creating its special organization to combat Iraqi insurgents: Task Force 121, a new joint strike unit reportedly composed of American special Forces units and Army Rangers.7Presumably steeped in counterinsurgency warfare, Task Force 121and other units operating against The Iraqi resistance has learned the lessons of past modern wars. They will not simply sweep towns.


This won’t defeat an organized insurgency. Instead, the enemy’s organization must be targeted to de-feat the clandestine organization attempting to impose its will on the Iraqi people. Four elements typically encompass an insurgency: cell networks that maintain secrecy; terror used to foster insecurity among the population and drive them to the movement for protection; multifaceted attempts to cultivate support in the general population, often by undermining the new regime; and attacks against the government.


Only by identifying and destroying the infrastructure of the subversive organization can the fledgling government perseveres. Stated another way, just as the traditional war is not fought with the individual soldier or platoon in mind but rather the state’s capacity and will continue hostilities, modern war seeks to destroy the organization as a whole and not simply its violent arm or peripheral organs.


After comparing the relative resources of the insurgent and government forces, Trinquier concludes “that the guerrilla’s greatest advantages are his perfect knowledge of an area (which he has chosen) and its potential and the support gave him by the inhabitants.” To turn this defeat into a victory, the counterinsurgent must recognize that “this total dependence upon terrain and population is also the guerrilla’s weak point.”


Toward this end, he suggests three simple principles: separate the guerrilla from the population that supports him; occupy the zones that the guerrillas previously operated from, making them dangerous for him and turning the people against the guerrilla movement; and coordinate actions over a wide area and for a long enough time that the guerrilla is denied access to the population centers that could support him.


This requires an extremely capable intelligence infrastructure endowed with human sources and deep cultural knowledge.  Indeed,  intelligence is key. As the Commander of the US Army’s 1st Armored Division in Iraq, Major General Martin Dempsey, observed in November 2003, “Fundamentally, here in Baghdad we do two things: We’re either fighting for intelligence or we’re fighting based on that intelligence.”


Despite unparalleled improvements in military intelligence, the United States does not seem to have the depth and breadth required in human intelligence (humint) and cultural intelligence arenas. Arabic linguists are lacking. Undersecretary of Defense for Intelligence Stephen Cambone, discussing intelligence shortcomings documented in an internal report, might have understated the problem, admitting, “We’re a little short on the humint side; there’s no denying it.”


For Trinquier, intelligence was one of several crucial enablers for de-feating an insurgent. Others included a secure area to operate from, sources in the general population and government, maintaining the initiative, and careful management of propaganda.


A critical step in any counterinsurgency campaign is the creation of a“tight organization” to counter the enemy’s organizational advantages. Created from the bottom up, based on a full appreciation for the tactical situation, a successful counterinsurgency organization must depart from their standard operational approach to warfare.


For example, campaign planning should include a system to account for every citizen, coordination with the political ef-fort to designate a hierarchical network of groups headed by pro-government chiefs, and a system to monitor the activities of guerrilla sympathizers. This entails a census, the issuing of photo-identification cards, and a countrywide intelligence system. The ultimate goal is to separate the fish from the sea, leaving it exposed to the state’s spear.


Thursday, 30 September 2021

SCARLET-WINGED LICHEN MOTH “Hypoprepia miniate”

RECOGNITION Black body mottled with yellow, especially laterally. Long, black, shiny spines arise from irregular blackened patches. On midabdominal segments each seta arises from its own blackened plate, except above spiracle, where two setae share single plate. Larva to 3.5cm. Painted Lichen Moth (Hypoprepia fucosa) smaller, marked with less yellow; middorsal stripe less differentiated (inset).

OCCURRENCE Woodlands and forests from southern Canada to Florida and Texas. One generation with mature caterpillars from May to July northward; two or three generations in Missouri with mature caterpillars nearly year-round.

COMMON FOODPLANTS Lichens and blue-green algae (cyanobacteria) growing

on tree trunks, fallen logs, and rocks.

REMARKS Adults of eastern Hypoprepia vary considerably in different parts of the Southeast, so much so that some lepidopterists feel additional species will eventually be recognized. Hypoprepia and other lithosiine arctiids have anal combs that allow them to eject their fecal pellets distances of 30 or more body lengths. 

The comb, which protrudes from the underside of the anal plate, is hooked under a torus of rectal tissue. Hemolymph (blood) is then forced to the last body segment, where pressure becomes so great that the comb slips and the fecal pellet is ejected with great velocity. “Fecal flicking” foils parasitic and predatory wasps that would use volatiles from the excreta to locate their intended victims.  Hypoprepia caterpillars are cannibalistic on smaller larvae and pupae. The caterpillar overwinters.


Saturday, 11 September 2021

Birds for All Seasons

Watching birds is a delightful activity at any time of the year - provided, of course, that the weather conditions are not too severe! Particular habitats or regions may have more to offer at certain times of the year, however, and a little insight and planning can help decide the potentially interesting areas to visit on a trip at any particular season. Birdwatching is an amazingly popular pastime in Britain. Hence, individuals of all ages are involved, and the degree of eagerness and promise ranges from casual appreciation to nothing short of fanatical pursuit. While many are happy to enjoy the birds that they encounter on their travels, 'twitching' or the pursuit of rarities is an increasingly popular form of modern birdwatching. 

This is fueled by the well-developed twitchers' grapevine, which is centered on various recorded- message bird information telephone lines. While finding or seeing unusual species is exciting, it should not detract from the satisfaction to be found in close, careful observation of common species - for birds of all kinds, be they common or rare, are fascinating and more than repay the time spent observing and studying them. Spring is a wonderful season for the birdwatcher. In woodlands everywhere, it heralds the start of the breeding season, and the songs of the resident species are augmented by those of newly arrived migrants. Dawn is the best time for hearing the widest range of birdsong. 

Migrants and the flow of migrating birds are also clearly seen in spring along Britain's seashores, where headlands and estuaries offer excellent opportunities to see the birds. Summer is a comparatively quiet time of year for the birdwatcher. although not without its highlights. Family parties of songbirds may be found in woods and hedgerows - those migrant species feeding eagerly on ripening berries are storing energy for their forthcoming travels. 

Lakes and reservoirs often attract large numbers of swallows, martins, and swifts which feed on the the abundance of insect life, while estuaries around the coast witness the first gatherings of migrating waders and wildfowl. This is probably the liveliest time to visit seabird colonies on the cliffs: ravenous, fully grown young are being fed continually at this time of the year, so there is plenty of activity. For the birdwatcher with access to the coast, autumn is perhaps the most exciting season: everywhere there are signs of migration and the estuaries begin to fill up with ducks, geese, and waders. 

As the weather deteriorates towards winter, inland birds of many kinds tend to move out to the coast, where the proximity of the sea moderates extremes in the weather. Winter can be an unexpectedly good season for the woodland birdwatcher. The lack of leaves makes observation among trees and bushes relatively easy, and many of the smaller birds band together in roaming flocks, often being joined by winter visitors. Grassy downs, heaths, and marshes can harbor birds of prey at this time of year, and estuaries and wetlands are often outstanding. Birds may appear quite different at changing times of the year and life-cycle. 

Though a puffin is most familiar in its bright adult, summer colors (left and bottom), these illustrations show the changes from four weeks old, at around six weeks, during a first winter, an adult in winter, and an adult in the summertime. No matter in which season, it is always worth keeping a cautious eye on the weather, for abrupt changes or extremes can have a dramatic influence on the numbers and species of birds to be seen. For example, westerly gales in the autumn will initiative migrating seabirds, usually only seen well out to sea, near to the shore, making them easy to observe. 

However, the longer periods of southerly or southeasterly winds in spring can result in admirable conditions for migration, with large numbers of birds arriving overnight; in the autumn these same winds can result in all sorts of interesting and unusual sightings, as birds are blown off their regular migration routes. Sudden and prolonged periods of severe cold in winter can cause large numbers of birds to move towards the warmer south and west of the country, with even more individuals arriving here from Europe.


Monday, 30 August 2021

A Wheel to Watch the Heavens

 High in the Bighorn Mountains of Wyoming, on the stony surface of a windswept plateau, lies the ghostly outline of a spoked wheel eighty-two feet in diameter. Similar rocky circles appear in Saskatchewan, in Arizona, and at some fifty other sites across the North American plains. Some are a few feet in diameter, others are hundreds of times as large. All lie on high ground. 

The wheels are built simply: Thin ridges of stones formation, hub, and usually several spokes. Some have rocky piles, called cairns, in their centers and around the outer circles. The Bighorn medicine wheel - so-called because, to the American Indian, any object with spiritual properties was said to have medicine - is the best preserved and best known.

Historians guess that Plains Indians made this circle as early as the 1100s, but they cannot be certain Not do investigators know the exact purpose of any of the wheels - though clues may lie in their orientation. At the Bigham wheel, for instance, an observer who sights over the cairn in the foreground (above) toward the hub will look into the rising sun on the morning of the summer solstice. A second cairn would mark sunset on the same day. Other rock piles point to the rising and setting of three brilliant stars during seasonal changes.

Such alignments lead some theorists to believe that the medicine wheels like their huge megalithic cousins in Europe, were in fact astronomical observatories. This contention is strengthened by the fact that all such wheels are carefully positioned to offer clear views of the horizon. Furthermore, cairns in some wheels cover postholes that may have held upright timbers, so that the original sites would have looked almost like wooden versions of Stonehenge in England.

But critical questions remain. Why would Plains Indians need to watch the sky? Agricultural tribes might have wanted to keep track of growing seasons, but the nomadic Plains peoples lived by hunting bison. Could they have remembered an earlier age when they planted crops? Or did the solstice mark the turning point of the summer for them, a time to begin counting the days until the start of their southward migration?

Such questions may never be answered. Like the builders of so many of the earth's markings, those who laid out the medicine wheels have vanished, leaving later generations no key to their strange monuments. Desert. Near the small town of Blythe, California, he happened to glance down at the arid landscape. I could hardly believe what 1 saw," he said later. Sprawled across the desert, far from civilization, were the gigantic figures of a man and a long-tailed animal.

Reports of the so-called Blythe Giant continued in the decades to come, prompting scientists and other investigators to take a closer look at the little-known southwestern desert. There, along the arid lower valley of the Colorado River, they have discovered some 275 geoglyphic, obscure symbols, and bizarre, childlike drawings of humans and animals. The Mojave's surface, like that of the Nazca desert, is covered with rocks varnished to a dark sheen by the sun, apparently, the Mojave artists used the same rock-removal technique as the Nazcas to create their enigmatic messages.

Most of these desert markings have been discovered since the 1970s, thanks to the tireless efforts of California archeologist Jay von Werlhor and his collaborator, a local farmer and pilot named Harry Casey. By plane and foot, they have reconnoitered thousands of square miles of the blistering ground that early Spanish explorers called tierra del muerto, "land of the dead." The collaborators' goal is to catalog and describe every desert marking in this vast region. "It's absolutely addictive," Casey has said of his quest. "the more you learn, the more you want to know."

Von Werlhof and his fellow archeologists believe the figures found on the Mojave were created for mystic purposes by the Indians who have inhabited the desert for more than 5,000 years. The date the oldest of the figures to 3000 Bc and the most recent of them to the late eighteenth century AD More primitive configurations, known as rock alignments-twisting lines of boulders set side by side in abstract patterns -may be as much as 10,000 years old.

The investigators offer several interpretations of the weird tableau at Blythe, whose age is variously estimated at between 200 and 1,000 years. According to legends passed down by the Mojave Indians, the manlike form represents an evil giant who terrorized their ancestors. The animal figure, which seems to float upside down over the man's head, is said to be a mountain lion imbued with great power from the Mojave's creator god, it was placed there to weaken the giant's spirit. A less dramatic theory suggests that the giant is a kind of graphic "no trespassing" sign placed by Hopi Indians to keep intruders out of their territory.

Many of the animal figures seem to have retained a spiritual significance to the desert dwellers. A 180-foot-long rattlesnake with basalt eyes, according to Mojave medicine men, has powers of good or evil that can be passed onto humans. A figure near Yuma, Arizona is clearly that of a horse, an animal unknown to the southwestern Indians before the coming of Europeans. 

Archeologists believe that the Indians created the image sometime after Spanish explorers rode through the area in 1540 and that they subsequently used the desert drawing as a ceremonial meeting place. Another figure, not discovered until July 1984, is a startlingly animated rendering of a fisherman who appears to be dancing on the water while aiming a spear at two fish. The tip of the spear is made of hundreds of pieces of glittering quartz and may have been designed to bestow magic powers on real fishermen.

Like their counterparts at Nazca, the Mojave figures apparently served a variety of purposes, and at least some of the drawings may have been astronomical markers. A rock alignment along the Gila River in Ari zona, for example, points precisely to the sunrise at the summer solstice. Another, known as the Black Point Dance Circle, may have been designed as a map of the sun, moon, and Milky Way. Knowledge of the heavens could have given Indians a calendar with which to plan their farming and irrigation-vital information in a difficult environment.

Whatever the purpose of their elaborately drawn geoglyphic, the Indians of the Nazca and Mojave deserts were blessed with ideal natural blackboards upon which to scratch out their designs. The natives of the temperate forests of the American Midwest and South was not so fortunate, but they still managed to mark the landscape with impressive animal figures Like their desert counterparts, these images can best be appreciated from the air. 

Sunday, 30 May 2021

Genus Micrustur

The genus Micrustur is a distinct group of six species of small to large falcons with long tails and short wings that inhabit forests from southern Mexico to Central Argentina. Little information exists on the natural habits of its members; indeed even nidification remains unknown (Brown and Amadon, Eagles, hawks and falcons of the world, I discovered a nest of the Collared Forest Falcon (M. semitorquatus) in a canopied forest (estimated to be 20-40 m high) in southwestern Guarico state, Venezuela. The nest was 12 m from the ground in the cavity of a 38-m tree (determined from a clinometer).

The Cuarico River was 200-300 m east of the nest. I found the nest around IO:00 h on 20 August 1978 and returned four hours later with three companions and tree climbing gear. I discovered one nearly fledged chick inside the nest cavity. I estimated the cavity to be about 0.50 m deep and 0.60 m wide. There were two openings into the hollow, both well sheltered from the rain and on opposite sides of the tree trunk.

One was round, about 20-30 cm in diameter and at the top of the cavity. The hole appeared to be the place where a limb had broken off and since rotted. I first located the nest by hearing the chick calling and then seeing it peering out through this hole; it was probably the entrance used by the adults. The second entrance to the cavity was a vertical slit about 30 x 20 cm. Looking into the cavity from this opening, I could see no evidence of nesting material on the floor of the cavity so presumably this species of falcon, like most others, lays its eggs in a bare scrape.

The floor of the cavity had vines growing across it while the sides of the cavity were white-washed from falcon droppings. Although I could not see any prey remains, the nest smelled heavily of decaying animal matter. When I tried to grab the chick to obtain measurements and photographs it jumped to the round entrance hole and clumsily flew about 30 m to a tree. After climbing down I looked at the chick through 10 x 50 binoculars. The primaries and rectrices were noticeably short and not fully grown. I believe that this chick was the only one because I did not hear any others calling. I first found this pair of falcons on 16 July. Although

I saw an adult, presumably the female (with an obvious brood patch) I failed to find the nest. This bird walked along horizontal tree limbs and called at me. On subsequent visits I saw little of the adults but often heard them. They uttered two calls. The first appeared to be an alarm call aimed at me and sounded like “ho, ho, ho.” The second call sounded like a single long “ho.” At times an adult gave this call and the chick returned it, but at a different pitch. On other occasions the adults gave this call back and forth to one another.

The fact that the falcons nested roughly between June and August suggests that breeding may usually occur in the wet season (April-November in Guarico). Other forest hawks such as the Roadside Hawk (Buteo mugnirostris), Crane Hawk (Gerunospiza caerulestens), and Bicolored Hawk (Accipiter bicolor) also breed in the wet season (pers. observ.).